ON THE MARX CONJECTURE FOR STARLIKE FUNCTIONS(1)

BY P. L. DUREN

Let S^* denote the class of functions $f(z) = z + a_2 z^2 + \cdots$ which map the unit disk |z| < 1 conformally onto a domain starlike with respect to the origin. An important example is the Koebe function $k(z) = z(1-z)^{-2}$, which maps the disk onto the entire plane slit along the negative real axis from -1/4 to $-\infty$. In 1932, A. Marx [3] observed that for every $f(z) \in S^*$, f(z)/z is subordinate to k(z)/z in the sense that for each fixed r < 1, the image of the disk $|z| \le r$ under f(z)/z is contained in the image under k(z)/z. Marx conjectured that a similar statement could be made for derivatives; namely, that for every $f(z) \in S^*$, f'(z) is subordinate to k'(z). Since $f(z) \in S^*$ implies $f(\alpha z)/\alpha \in S^*$ for $|\alpha| \le 1$, an equivalent form of the conjecture is as follows. For each fixed z_0 , $|z_0| < 1$, the set of values $f'(z_0)$ for all $f \in S^*$, is precisely the set of values k'(z) for all z in the disk $|z| \le |z_0|$.

Marx verified this conjecture for $|z_0| \le 2 - 3^{1/2} = 0.267 \cdots$. R. M. Robinson [4] improved the constant to $(5-17^{1/2})/2 = 0.438 \cdots$, and later [5] made a further improvement to 0.6. More recently, J. A. Hummel [2] attacked the problem as an application of his variational method within S^* , but was able to obtain only a partial result previously found by Robinson.

In the present paper, we increase the constant to $r_0 = 0.736 \cdots$, the exact value of r_0^2 being a solution of the cubic equation $x^3 + 3x^2 + 11x = 7$. Our method is essentially the same as Robinson's in [5], but we establish the stronger result by a more detailed analysis. The constant seems to be the best obtainable by this method, although it is not best possible (see §4). We prove that for each fixed z_0 , $|z_0| < r_0$, and for each fixed ψ , $0 \le \psi < 2\pi$, the extremal problem

(1)
$$\max_{f \in S^*} \operatorname{Re} \left\{ e^{i\psi} \log f'(z_0) \right\}$$

is solved by a function mapping |z| < 1 onto the exterior of one radial slit; that is, by some rotation $e^{-i\phi}k(e^{i\phi}z)$ of the Koebe function. (Robinson and Hummel proved the extremal map has at most two radial slits, $|z_0| < 1$.) Later (§3) we do a calculation to show that the function $\log k'(z)$ is convex in

Received by the editors September 9, 1963 and, in revised form, January 21, 1964.

⁽¹⁾ This work was supported in part by the National Science Foundation through a research grant at the University of Michigan.

 $|z| < R_0 = 0.886 \cdots$, where the exact (largest) value of R_0^2 is a solution of the quintic equation (10). In particular, $\log k'(z)$ maps each disk $|z| \le r < r_0$ onto a convex region. From these two results the Marx conjecture is easily deduced.

Indeed, for fixed z_0 , $|z_0| < r_0$, let $R(z_0)$ denote the set of all numbers $\log f'(z_0)$, $f \in S^*$; and let $K(z_0)$ denote the set of all numbers $\log k'(z)$, $|z| \le |z_0|$. It is clear that $K(z_0) \subset R(z_0)$. The solution to problem (1) shows that each supporting line of $R(z_0)$ meets $R(z_0)$ at a point which is also in $K(z_0)$. Hence $R(z_0)$ is contained in the convex hull of $K(z_0)$; that is, $R(z_0) \subset K(z_0)$. Therefore, $R(z_0) = K(z_0)$, which is the Marx conjecture.

Having proved the conjecture for $|z_0| < r_0$, it is a simple matter to extend it to $|z_0| \le r_0$. Indeed, if for some z_0 of modulus r_0 there were a function $f \in S^*$ for which $\log f'(z_0) \notin K(z_0)$, then (since $K(z_0)$ is closed) it would follow by continuity that $\log f'(z_1) \notin K(z_0) \supset K(z_1)$ for some $z_1, |z_1| < r_0$. This is impossible.

1. **Preliminaries.** In considering the extremal problem (1), it suffices to take $z_0 = r$, 0 < r < 1. Robinson [5] proved that an extremal function must have the form

(2)
$$f(z) = z \prod_{\nu=1}^{n} (1 - ze^{i\phi_{\nu}})^{-2\nu},$$

where $a_v > 0$, $a_1 + a_2 + \cdots + a_n = 1$, and the $e^{i\phi_v}$ are distinct. This also results from a general theorem of Hummel. For the particular problem (1), Robinson and Hummel both showed $n \le 2$, but this knowledge does not simplify our argument. For f(z) given by (2), we calculate

(3)
$$\log f'(r) = \log \sum_{\nu=1}^{n} a_{\nu} \frac{1 + re^{i\phi_{\nu}}}{1 - re^{i\phi_{\nu}}} - 2 \sum_{\nu=1}^{n} a_{\nu} \log(1 - re^{i\phi_{\nu}}).$$

We shall have need of the following lemma. (Compare Robinson [5, Theorem 1].) Lemma. Let $F(z_1, z_2, \dots, z_n)$ be an analytic function of the n complex variables $z_v, |z_v| \le 1$. Among all systems of points z_v with $|z_1| = |z_2| = \dots = |z_n| = 1$, let $Re\{F\}$ attain its maximum at $\alpha_1, \alpha_2, \dots, \alpha_n$. Then

(4)
$$\alpha_{\nu} \frac{\partial F}{\partial z_{\nu}}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) \geq 0, \qquad \nu = 1, 2, \dots, n.$$

Proof. Let $\partial F(\alpha_1, \alpha_2, \dots, \alpha_n)/\partial z_v = A_v + iB_v$. By the maximum principle, the α_v also maximize Re $\{F\}$ in $|z_v| \le 1$. Hence, for any vector $\xi + i\eta$ which points from α_v toward the interior of the unit circle,

$$\operatorname{Re}\{(A_{\nu}+iB_{\nu})(\xi+i\eta)\} = A_{\nu}\xi - B_{\nu}\eta \leq 0.$$

But these vectors $\xi + i\eta$ are characterized by $a_{\nu}\xi + b_{\nu}\eta < 0$, where $\alpha_{\nu} = a_{\nu} + ib_{\nu}$.

The conclusion is that $A_{\nu} + iB_{\nu} = \lambda_{\nu}(a_{\nu} - ib_{\nu})$ for some real $\lambda_{\nu} \ge 0$, which is equivalent to (4).

It should be remarked that the vanishing of the partial derivative of $\text{Re}\{F\}$ with respect to θ_{ν} ($z_{\nu}=e^{i\theta_{\nu}}$) tells us that the expression (4) is real. The non-negativity comes from the maximum property.

2. Solution of the extremal problem. Let us fix attention on some solution to problem (1), for $z_0 = r$. For such an extremal function (2), $\log f'(r)$ has the structure (3). In particular, among all functions having the same n and the same weights a_{ν} as the extremal function, the expression $\operatorname{Re}\{e^{i\psi}\log f'(r)\}$ is maximized by the numbers $e^{i\phi_{\nu}}$ which occur in the extremal function. We are now in a position to apply the lemma, with

$$F(z_1, \dots, z_n) = e^{i\psi} \left[\log \sum_{\nu=1}^n a_{\nu} \Phi(z_{\nu}) - 2 \sum_{\nu=1}^n a_{\nu} \log(1 - rz_{\nu}) \right];$$

$$\Phi(z) = (1 + rz)/(1 - rz).$$

Setting $\zeta = \sum a_{\nu} \Phi(z_{\nu})$, we compute

(5)
$$z_{\nu} \frac{\partial F}{\partial z_{\nu}} = 2ra_{\nu}e^{i\psi}z_{\nu} \left[\zeta^{-1}(1-rz_{\nu})^{-2} + (1-rz_{\nu})^{-1}\right].$$

According to the lemma, each of the expressions (5), $v = 1, \dots, n$, is real and non-negative for $z_v = e^{i\phi_v}$. From this we wish to conclude n = 1. It suffices to prove that for every fixed ζ inside or on the circle $\zeta = \Phi(e^{i\theta})$, $0 \le \theta \le 2\pi$, the function

$$G(z) = z[\zeta^{-1}(1-rz)^{-2} + (1-rz)^{-1}]$$

is starlike in $|z| \le 1$. This is true, as we shall show, for $r < r_0$, but false for $r > r_0$.

A short calculation leads to the expression

(6)
$$\frac{zG'(z)}{G(z)} = 1 + \frac{2rz}{1 - rz} - \frac{\zeta_1 rz}{1 - \zeta_1 rz},$$

where $\zeta_1 = \zeta/(1+\zeta)$ is some fixed number in the closed disk with center at 1/2 and radius r/2. Our strategy is to choose ζ_1 , as a function of $z=e^{i\theta}$, to minimize the real part of (6); then to determine the largest r for which this minimum is non-negative for all θ . Equivalently, for fixed $z=e^{i\theta}$, we seek to maximize the real part of $w=\zeta_1 rz/(1-\zeta_1 rz)$ for ζ_1 on the circle with center 1/2 and radius r/2. A bit of manipulation gives

$$\frac{w - rz/(2 - rz)}{w + 1} = (\zeta_1 - 1/2) 2rz/(2 - rz).$$

This shows that the image of the given circle in the ζ_1 -plane is the circle |(w-p)/(w-q)| = k, where

$$p = \frac{re^{i\theta}}{2 - re^{i\theta}}, \qquad q = -1, \qquad k = \frac{r^2}{|2 - re^{i\theta}|}.$$

It is not difficult to show (see, e.g., [6, pp. 191-192]) that this is the circle with center $w_0 = (p - k^2 q)/(1 - k^2)$ and radius $\rho = k | p - q | /(1 - k^2)$. Hence the maximum value of Re $\{w\}$ on this circle is attained at $w_0 + \rho$. Replacing the last term in (6) by $-(w_0 + \rho)$ and setting $x = \cos \theta$, one calculates $H(x) = \text{Re}\{e^{i\theta}G'(e^{i\theta})/G(e^{i\theta})\}$ to be

$$H(x) = 1 + \frac{2r(x-r)}{1+r^2-2rx} - \frac{r(r+r^3+2x)}{4+r^2-r^4-4rx}$$
$$= 2h(x)[1+r^2-2rx]^{-1}[4(1-rx)+r^2(1-r^2)]^{-1},$$

where

$$h(x) = 2(1 - r^2 - r^4) + r(-3 + 2r^2 + r^4)x + 2r^2x^2.$$

Our task is to find the largest value of r for which $h(x) \ge 0$ throughout the interval $-1 \le x \le 1$. The minimum of h(x) is easily seen to occur at $x_0 = (3 - 2r^2 - r^4)/4r$, a number which for $r^2 \ge 1/2$ satisfies $-1 \le x_0 \le 1$. One computes

$$8h(x_0) = (1+s)(7-11s-3s^2-s^3), \qquad s=r^2.$$

The cubic equation

$$(7) s^3 + 3s^2 + 11s - 7 = 0$$

has a unique solution $s=r_0^2$ in the interval 0 < s < 1, the value of which is computed most conveniently by successive approximations (Newton's method). We find $r_0 = 0.736 \cdots$. Since $r_0^2 \ge 1/2$, we have proved that G(z) is starlike in $|z| \le 1$ for the parameter r in the range $0 \le r < r_0$. Hence for $|z_0| < r_0$, the extremal problem (1) is solved by some rotation of the Koebe function. The argument fails for $r > r_0$, since for no such r is G(z) starlike in $|z| \le 1$ for all ζ .

3. Radius of convexity of $\log k'(z)$. The proof can now be completed by verifying that $\log k'(z)$ is convex in $|z| < r_0$. We shall do so by calculating the exact radius of convexity. Set $g(z) = \log k'(z)$; then

(8)
$$1 + \frac{zg''(z)}{g'(z)} = \frac{2(1+z+z^2)}{(1-z^2)(2+z)}.$$

The radius of convexity of g(z) is the largest value of ρ for which the real part of (8) is positive in $|z| < \rho$. A short calculation gives

$$(1/2) \left| (1-z^2)(2+z) \right|^2 \operatorname{Re} \left\{ 1 + \frac{zg''(z)}{g'(z)} \right\}$$

$$= (2+r^2-2r^4) + (3r-r^3-r^5)\cos\theta - r^4\cos2\theta - r^3\cos3\theta.$$

where $z = re^{i\theta}$. Now set $x = \cos \theta$, so that $\cos 2\theta = 2x^2 - 1$ and $\cos 3\theta = 4x^3 - 3x$. The problem reduces to finding the largest value of r for which the cubic polynomial

$$P(x) = (2 + r^2 - r^4) + (3r + 2r^3 - r^5)x - 2r^4x^2 - 4r^3x^3$$

is non-negative throughout the interval $-1 \le x \le 1$.

Observe first that $P(1) = (2 + 3r + r^2)(1 - r^3) > 0$, so only the relative minimum of P(x) needs to be considered. Straight forward differentiation shows this relative minimum occurs at

$$x_0 = -(r/6)[1 + (9r^{-4} + 6r^{-2} - 2)^{1/2}].$$

Note that $-1 \le x_0 \le 1$ for $r^2 \ge 1/2$. Another calculation leads to

$$54P(x_0) = 108 + 27r^2 - 72r^4 + 7r^6 - 2(9 + 6r^2 - 2r^4)^{3/2}.$$

The condition $P(x_0) = 0$ is therefore equivalent to $s = r^2$ being a solution of the sixth-degree equation

(9)
$$(108 + 27s - 72s^2 + 7s^3)^2 = 4(9 + 6s - 2s^2)^3.$$

After expansion, simplification, and division by (s + 1), (9) reduces to

$$(10) s5 - 17s4 + 91s3 - 99s2 - 108s + 108 = 0.$$

The quintic equation (10) has a unique solution $s = R_0^2$ in the interval 0 < s < 1, since the derivative of the given polynomial is negative throughout this range. Using an automatic computer this time, we found

$$R_0 = 0.886 \cdots$$

This is the radius of convexity of $\log k'(z)$. Since $R_0 > r_0$, the Marx conjecture is proved for $|z_0| < r_0$. Hence, as noted in §1, it is true for $|z_0| \le r_0$.

We mention without proof that $\log k'(z)$ is starlike in the entire circle |z| < 1.

4. Remarks. R. M. Robinson has kindly pointed out to me that the constant r_0 is not best possible; that is, the Marx conjecture is true in a disk larger than $|z_0| \le r_0$. The proof is presented here with his permission.

We have observed that for any fixed $r < R_0$, the proof of the Marx conjecture for $|z_0| \le r$ can be reduced to showing that for each ψ the expression $\text{Re}\{e^{i\psi}\log f'(r)\}$ is maximized by a function (2) for which n=1; that is, by some rotation of the Koebe function. In §2 we reduced a proof of this latter proposition to the following statement. If $z_{\nu} = e^{i\phi_{\nu}}$, $\nu = 1, 2, \dots, n$, are distinct numbers such that (in notation previously used) all the points $G(z_{\nu})$ lie on the same ray, where $\zeta = \sum a_{\nu}\Phi(z_{\nu})$, then n=1. This we verified for $r < r_0$ by a proof that for every value of the parameter ζ inside and on the circle

C:
$$\zeta = \Phi(e^{i\theta}), \quad 0 \le \theta < 2\pi,$$

G(z) is starlike in $|z| \le 1$. Although G no longer has this starlikeness property for $r > r_0$, the italicized statement can nevertheless be proved for r slightly greater than r_0 by a continuity argument.

For each fixed z on |z|=1, there is a unique ζ on C which minimizes $\operatorname{Re}\{zG'(z)/G(z)\}$. With this choice of ζ (as a function of z), there are two points z_0 and \bar{z}_0 which minimize $\operatorname{Re}\{zG'(z)/G(z)\}$. Let ζ_0 correspond to z_0 ; then $\bar{\zeta}_0$ corresponds to \bar{z}_0 . As r increases, the minimum of $\operatorname{Re}\{zG'(z)/G(z)\}$ (taken over z and ζ) decreases monotonically to zero at $r=r_0$. For r slightly greater than r_0 , it can happen that $\operatorname{Re}\{zG'(z)/G(z)\}<0$ only for z near z_0 and ζ near ζ_0 , or for z near z_0 and ζ near ζ_0 .

Now suppose that for each $r > r_0$ there are n = n(r) > 1 distinct points z_1, \dots, z_n on the unit circle such that $G(z_1), \dots, G(z_n)$ lie on a ray. The parameter ζ occurring in G is understood to be $\zeta = \sum a_v \Phi(z_v)$. It is clear geometrically that for r slightly greater than r_0 , either all the points z_1, \dots, z_n are near z_0 and ζ is near ζ_0 , or all the points z_1, \dots, z_n are near \bar{z}_0 and ζ is near $\bar{\zeta}_0$. But for each r, ζ is a weighted average of the points $\Phi(z_v)$. Therefore, by taking limits as $r \times r_0$, it follows that $\zeta_0 = \Phi(z_0)$ for $r = r_0$.

To conclude the proof that n=1 for all r in some neighborhood of r_0 , we show $\zeta_0 \neq \Phi(z_0)$, which is contradiction. By construction, $\text{Re}\{z_0G'(z_0)/G(z_0)\}=0$ for $\zeta=\zeta_0$ and $r=r_0$. On the other hand, if $\zeta=\Phi(z)$, a direct calculation from (6) leads to the simple expression

(11)
$$\frac{zG'(z)}{G(z)} = \frac{2(1+rz)}{2-rz(1+rz)}.$$

With $z = e^{i\theta}$ and $x = \cos \theta$, the real part of (11) is found to be a positive multiple of

$$2 + r(1 - r^{2})\cos\theta - 2r^{2}\cos^{2}\theta \ge 2 - r(1 - r^{2}) - 2r^{2}$$
$$= (2 - r)(1\mathbf{i} - r^{2}) > 0, \qquad r < 1.$$

Therefore, $\operatorname{Re}\{zG'(z)/G(z)\} > 0$ on |z| = 1 for all r (0 < r < 1) if $\zeta = \Phi(z)$. This shows $\zeta_0 \neq \Phi(z_0)$ for $r = r_0$, and finishes the proof.

Since r_0 is not best possible, it is natural to ask whether some modification of the method might lead to an improved result. One such modification would be to map |z| < 1 conformally onto |w| < 1 and to apply the lemma not directly to $F(z_1, \dots, z_n)$, but to the induced function of w_1, \dots, w_n . Robinson [5] used this idea. However, Professor Robinson has recently communicated to me the following proof that *every* such mapping leads to the same bound r_0 .

For the function $F(z_1, \dots, z_n)$, we found $z_v \partial F/\partial z_v = 2ra_v e^{i\psi}G(z_v)$, and we proved n=1 (for $r < r_0$) by showing G(z) is starlike; hence $z \partial F/\partial z \ge 0$ for only one value of z on |z|=1. But under a conformal mapping $z=e^{it}(w-\alpha)/(1-\bar{\alpha}w)$ of |w|<1 onto |z|<1,

$$z_{\nu} \frac{\partial F}{\partial z_{\nu}} = (1 - |\alpha|^2)^{-1} |w_{\nu} - \alpha|^2 w_{\nu} \frac{\partial F}{\partial w_{\nu}}, |w_{\nu}| = 1.$$

Hence $w_{\nu} \partial F / \partial w_{\nu} \ge 0$ can happen for only one value of w_{ν} , $|w_{\nu}| = 1$.

ACKNOWLEDGMENTS. I am deeply indebted to Professor Robinson for a number of helpful comments on the manuscript, in addition to the two observations presented above. My colleague F. W. Gehring also made a useful suggestion. Finally, I am grateful to Mr. L. J. Harding of the University of Michigan Computing Center for assistance in the numerical calculation.

REFERENCES

- 1. A. W. Goodman, The rotation theorem for starlike univalent functions, Proc. Amer. Math. Soc. 4 (1953), 278-286.
- 2. J. A. Hummel, Extremal problems in the class of starlike functions, Proc. Amer. Math. Soc. 11 (1960), 741-749.
 - 3. A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932), 40-67.
 - 4. R. M. Robinson, Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35.
 - 5. —, Extremal problems for star mappings, Proc. Amer. Math. Soc. 6 (1955), 364-377.
 - 6. E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939.

University of Michigan, Ann Arbor, Michigan